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Fragmentation kinetics 
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Abstract. Weanalyse foraclassoffragmentation models how theshatteringtransitionisrelatedto 
the behaviour of the size distribution function, and discuss existence criteria for its moments. For 
models with homogeneous fragmentation kernels exact expressions are derived for al l  moments in 
the shattering and non-shattering regimes 

1. Introduction 

Fragmentation occurs in a variety of physical processes such as polymer degradation [I], break- 
up of liquid droplets [2], and the crushing of rocks [3]. There has been considerable interest 
during the past few years in describing thkretically the time evolution of this phenomenon 
[4-71. Most of the work has been based on a h e a r  rate equation for a distribution of particles 
of a given size. For certain classes of models exact solutions were discovered [1,4-6]. A 
scaling theory based on the linear rate equation was also derived [7] and for quite a large class 
of models scaling solutions were conshucted [6]. 

The time evolution of the fragmentation process depends qualitatively on the behaviour 
of the probability of break-up for small particles: for break-up rates increasing sufficiently 
fast with decreasing mass or size, a cascading break-up occurs in which a finite part of 
the total mass, is transfened to +e particles of zero or infinitesimal mass. This so-called 
shattering [5] or disintegration [SI phenomenon is accompanied by a violation of the usual 
dynamical scaling [7]. 

The shattering behaviour seems to be inconsistent: on the one hand mass is conserved 
.in every single b+-up and one can formally prove mass conservation from the dynamic 
equation, on the other hand the total mass calculated from the exact solution of the rate 
equation decreases! The naive explanation is that particles of zero mass do not contribute 
to the standard expression for the total mass, exactly in the same way as particles of zero 
momentum do not contribute to the naive expression for the total number of particles in the 
case of the Bose-Einstein condensation. This argument is supported by the analysis of exactly 
solvable discrete models [l]. There, the total mass is conserved, but a finite fraction of it is 
contained in the smallest pBrticles-the monomers. In the continuum limit they become points 
of zero mass and their contribution to the total mass vanishes, while the mass of the remaining 
particles remains finite and smaller than the initial mass. 

A similar phenomenon occurs in the time evolution of atomic collision cascades [9]. Here 
the relevant quantity is the distribution of particles of a given energy. When a particle with a 
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finite energy collides with a zero-energy particle the energy is conserved, but it turns out that 
for a class of collisional cross-sections the total energy decreases. The physical interpretation 
of this fact is similar to that given above for the shattering behaviour in fragmentation; the 
energy is transferred to particles of zero or infinitesimal energy. It is worthwhile noting that the 
shattering has been known for quite a long time. A rigorous discussion ofthis phenomenon, 
contained in the 30 year old paper of Filippov 181, was presented at the seminar of probability 
theory of the Moscow State University in 1952! 

The aim of this paper is threefold. (i) We present a simple argument that clarifies an 
apparent inconsistency between a formal proof of the mass conservation law based on the rate 
equation itself, and the finite mass loss found from the integration of an exact solution of this 
equation. Our argument leads to a general criterion for shattering in terms of the behaviour 
of the size distribution function. (ii) We analyse convergence criteria for the moments of the 
size dishibution. This analysis leads to a phase diagram for the shattering transition. (iii) We 
correct an omission of McGrady and Ziff by calculating for the first time all moments in the 
shattering regime, as well as giving a concise derivation for the result in the non-shattering 
regime that was stated in [5] without proof. 

M H Ernst and G Szamel 

2. Shattering scenario 

We consider here the rime evolution of a distribution of particles of a given mass or size x 
denoted by c(x; t ) .  A particle of mass y can break up into smaller pieces with probability 
per unit time a(y). In this fragmentation a particle of mass x is produced with (conditional) 
probability b(x1y). The time evolution of the mass distribution is thus described by a linear 
rate equation 

We consider here the Ziff-McGrady [5] model of fragmentation for which kernels a(x) and 
b(xly) are given by homogeneous functions xcL and ( w  + 2)(x/y)”/y, respectively. A similar 
class of models was considered by Filippov. However, our qualitative results concerning the 
shattering scenario are more general. 

In every single break-up the mass is conserved. So the distribution of products b(x ly) has 
to satisfy the condition 

(2) 

For integral (2) to exist the exponent v has to be larger than -2. The average number of 
fragments resulting from the break-up of a particle of mass y is 

For homogeneous kernels to achieve the physically admissible 2 2 the exponent v has to 
be smaller than or equal to 0. Moreover, it follows from (3) that for -1 < U 6 0 the expected 
number of fragments is equal to (U + 2)/(u + 1) and for -2 c w 6 -1 the average number 
N is infinite. 
- 
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The first case corresponds to non-shattering break-up, whereas  the^ second and third ones 
correspond to shattering fragmentation. Note that only (10) agrees with the formal result (4). 
In thesecond case we obtain finite, non-zeromass currenttothe particles ofzeroorinfinitesimal 
mass. The third case corresponds to the instantaneous, non-physical shattering. We want to 
stress here that this shattering scenario is not restricted to models with homogeneous kernels- 
only the power-law behaviour of a, b and c for x + 0 is required. For the rate equation with 
homogeneous kernels the exact solution was, given by Ziff and McGrady [5]. Since the rate 

~ ' equation is linear it is sufficient to consider the solution for a monodisperse initial condition 
c ( x ;  0) = S(x - 1 ) :  

c ( x ;  t )  = exp(-tl") (S(x - 1 )  + (U + 2)tla-"-lx" 1F1(1 + (U + 2)/1y, 2: (la - x ' l ) f ) ]  (13) 

where I Fl (a. b; z) denotes the confluent hypergeometric function [lo]. The analysis~of the 
exact solution (13) shows that for non-diverging break-up rates, i.e. for U 3 0, exponent e is 
equal to -U. From the existence of integral (2) it follows that in this case 

e = -U < 2 < f f + z  (14) 

the mass is conserved and there is no shattering. To investigate the behaviour of c(X; t )  as 
x + 0 for diverging break-up rates we need the asymptotic behaviour [IO] of the confluent 
hypergeometric function I F1 (a, b; z) for z 3 -.w: 

where r(x) is the gamma function. It follows from (13) and (15) that for 01 < 0 

e E a + 2  (16) 

there is a finite, non-zero mass current toparticles of zero or infinitesimal mass, and a shattering 
fragmentation occurs. Instantaneous shattering does not exist within this model. 

3. Moments 

We consider here the moments of the distribution of particles of a given size for the 
fragmentation model with homogeneous kernels a(x)  = x u  and b(xly) = (U + 2 ) ( x / y ) " / y :  

M"(t )  = d X x " c ( x ; t ) .  (17) 

Since the evolution equation for c(x ;  t )  is linear, it is sufficient to consider moments for the 
monodisperse initial condition c ( x ;  0) = S(x  - I ) .  From the exact solution (13) we obtain 

l- 

First we consider moments in the non-shattering regime 1y =- 0. In this case the integrand 
behaves as xu+" for x + 0, and the nth moment exists, i.e. the integral is convergent, for 
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According to (2) the mass is conserved in every single break-up and a straightforward 
integration of (1) gives formally the mass conservation Iaw 

However, it tums out that for fragmentation rates u(x )  increasing sufficiently fast as x -+ 0, 
a more subtle analysis is required and (4) is not always valid. Let us consider first a cut-off 
mass Me and then take the limit E + O+: 

CO 

M6 = l dxxc(x; t )  . (5 )  

The cut-off mass loss is 
m 

Me = - 1 &xu(x)c(x: t )  + lm& lmdyxb(xly)4y)c(y: 0 .  (6) 

By interchanging the integration over x and y and slighty rewriting the resulting formula we 
arrive at 

lm dy lm d~ x b  (x I Y)a (MY; 0 

The first two terms cancel due to condition (2) and we obtain 

Now suppose that for x + 0 the fragmentation rate and the distribution of products 
can be approximated by homogeneous kernels u(x)  - xu and b(xly) - (U + 2) (x / y ) ” / y ,  
respectively, and that in the same limit the mass distribution is apower law c(x; f )  - A(t)x-’. 
One can then calculate the contribution to the cut-off mass loss from breakage of the small 
particles: 

The upper integration limit is not relevant since it does not conhibute to the E + O+ limit. It 
follows from (9) that depending on exponent B the’mass loss M = lim,,o+ MG is zero, finite 
but non-zero, or infinite: 

M =  l i m & & = ~  f o r e c r u + 2  (10) 
6+0+ 
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U + n + 1 > 0.  note that for -2 < v < -1 the expected number of fragments in a single 
break-up 7 is infinite and-as could have been anticipated-the average number of particles, 
i.e: the zero-moment, is also infinite. 

In the non-shattering region the exact expression for the nth moment, 

M,(t) = I" exp(-tl') 1 F1 ((U + 2)/a, (U + n + l ) /a ;  tl") (19) 

has already been quoted without derivation by Ziff and McGrady [SI. In the appendix we 
present a concise derivation. Note that forn = 1 the confluent hypergeometric function in (19) 
reduces to a simple exponential and we obtain the mass conservation law M, (t) = M I  (0) = 1. 

Now let us consider the moments in the shattering regime 01 < 0. It follows from the 
asymptotic behaviour (15) of the confluent hypergeometric function that the integrand in the 
expression for the nth moment (18) behaves as X"-*-' for x 4 0 and the moment exists, 
i.e. the integral is convergent, for n - a - 1 > 0. Note the surprising fact that for a < -1 
the 0th moment is always finite, irrespectively of U. So the average total number of particles 
could be finite even though the expected number of fragments in every single break-up is 
infinite! Moreover, a finite fraction of the total mass would be transferred to a finite number of 
particles with zero or infinitesimal mass! We conclude that a physically acceptable situation 
corresponds to a > -1. 

As an important new result, supplementing Ziff and McGrady's result (19), we give here 
the exact expression for the nth moment in the shattering region (the detailed calculation is 
presented in the appendix): 

The above expression is not valid for (U + n + l)/a being a negative integer or zero, as both 
contributions are infinite in this case. To obtain the correct finite result one should take the 
limit (U f n  + l ) /a  + negative integer or zero of the whole expression (20). From the general 
formula (20) one can obtain the expression for the average total mass 

where y(a ;  z )  denotes the incomplete gamma function [lo]. The total mass monotonically 
decreases with time. 

The  expression (21) has been derived by Filippov [8] and subsequently rederived for the 
special case of (U + 2)/a being a negative integer by Ziff and McGrady [5 ] .  The general 
formula (20) is new. 

We conclude with a short overview of the behaviour of the system for different values 
of a. For a > 0 the total mass is conserved whereas the total number of particles can be 
finite or~infinite, depending on the expected number of fragments in a single break-up. For 
- 1 < 01 < 0 the total mass decreases monotonically with time and the total number of particles 
is always infinite. It is important to note that the shattering transition is connected with the 
non-conservation of mass and not with the infinite total number of particles. 
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Appendix 

Let us consider first the moments for non-shattering fragmentation. To calculate the integral 
in (18) we use the following identity [ll]: 

where 2Fz(c, d ;  e, f; y) is the generalized hypergeometric function [U]. First we use (Al) 
with ji = (U + n + l)/u and h = 1 and express the integral in (18) in terms of 2F2 

l i d r x y + n  ,F1(1 + (U + 2)/01,2: (I" - X")t) 

I"+"+' 

v + n + l  
&(I, 1 + (U + Z)/u; 2,1+ (U + n + l)/a; tl") . (A21 

Then we use (AI) with p = 1 and A = 1 and reduce zF2 to the integral of 1 F1 that can be 
directly calculated with help of formula (13.4.9) from 1101: 

zFz(1, 1 + (U + Z)/a; 2,1+ (v +n + 1)b;  tl") 

-~ - 

11' 

= ( t ~ ) - l  1 dz I F ~ ( I +  (u + 2)/o1,1+ (u + n + ~ / a ;  z) 

- - V + n + 1 ( t ~ " ) - ' ~ 1 ~ l ( ( u + 2 ) / f f , ( u + n + 1 ) / 0 1 ; t ~ ~ )  U + 2  - 1). (A3) 

Using (A2) and (A3) in the general expression for moments (IS) we arrive easily at Ziff and 
McGrady's formula (19). 

Now consider the moments for shattering kagmentation. In this case we first rewrite the 
integral in (18): 

(A41 
Then using a rather complicated formula (7.627.8) from [ 121 we express (A4) in terms of the 
generalized hypergeometric functions 
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where p = -(U + n + l ) / a  and q = -(v~+ 2)/a. The generalized hypergeometric 
function in the first term in (A5) can be straightforwardly expressed in terms of the confluent 
hypergeometric function whereas that in the second term can bereduced to 1 F, by using identity 
(Al) with I*. = 1 and h = 1 and calculating the resulting integral explicitly. Substituting the 
result into the general expression for moments.(lS) we arrive at (20). 
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